определяется содержанием в них радиоактивных элементов - членов радиоактивных рядов (См.
Радиоактивные ряды)
92238U,
92235U,
90232Th и радиоактивного изотопа
4019K. Содержание др. радиоактивных изотопов (
,
и др.) существенно не влияет на общую Р. г. п., так как скорость их радиоактивного распада крайне мала. Среднее содержание обоих изотопов урана в земной коре (до глубины 16
км) составляет около 2,5․10
-4\% (весовых), тория 1,3․10
-3\%, радиоактивного изотопа калия 0,029\%. Кроме того, в
горных породах присутствуют продукты распада радиоактивных элементов, которые иногда мигрируют в окружающие породы и образуют в земной коре струи подземных газов (Не, Ar и т.д.). В почвах накапливается Rn, имеющий радиогенное происхождение.
Среди изверженных
горных пород наибольшей радиоактивностью обладают кислые (U - 3,5 ․10
-4; Th - 1,8․10
-3), наименьшей - ультраосновные породы (U - 3․10
-7; Th - 5․10
-7). В кристаллических
горных породах радиоактивные элементы частично входят в состав акцессорных минералов (См.
Акцессорные минералы),
Ортита,
Циркона,
Монацита,
Апатита, сфена и др., а также частично присутствуют в форме окислов, химически не связанных с определёнными минералами.
Содержание радиоактивных элементов в осадочных горных породах (U - 3,2․10-4; Th - 1,1․10-3) определяется их происхождением; максимальные концентрации в органогенных осадках обусловлены присутствием углерода органического происхождения, фосфатов и др. веществ, являющихся важными осадителями урана (напротив, хемогенные осадки - гипс, каменная соль - отличаются низкой радиоактивностью).
В почвах отношение Th к U значительно выше, чем в коренных (массивных) породах, что связано с накоплением Th в неразрушаемых остатках пород и миграцией легкоподвижного U.
В молодых глубоководных морских отложениях наблюдается значительное накопление иония (изотопа Th, члена радиоактивного ряда 92238U), в десятки раз большее по сравнению с равновесным его содержанием в уране. Это обусловлено химическими особенностями иония, благоприятствующими выпадению его из воды с осадками, в отличие от U, удерживающегося в растворе.
Кристаллические породы Луны (базальты, анортозиты) заметно обеднены радиоактивными элементами (U - 0,24․10-4, Th - 1,14․10-4), а породы Венеры характеризуются соотношениями U (2,2․10-4) и Th (6,5․10-4), близкими земным (каменные метеориты соответственно содержат U - 1,5․10-6 и Th - 4․10-6).
Английский геолог Дж. Джоли впервые (1905) обратил внимание на то, что Р. г. п. имеет важное значение как источник тепловой энергии Земли. Расчёты показали, что если бы концентрация радиоактивных элементов в объёме всей Земли была такой, как в её поверхностном слое, то суммарное количество тепла, образующегося в результате радиоактивного распада, в несколько десятков раз превышало бы потерю Землёй тепла путём излучения его в мировое пространство; из этого следовал вывод, что все радиоактивные элементы сосредоточены только в верхней зоне земной коры. Такое предположение получило частичное подтверждение в 1970-е гг. после измерения концентрации U и Th (10-6\%) в образцах пород из мантии, извлечённых со дна океанов.
Норвежский учёный В. М. Гольдшмидт показал (1923-27), что содержание радиоактивных элементов в основном в верхней (гранитной) оболочке Земли связано с химическими особенностями силикатов (См.
Силикаты) (изоморфным вхождением U и Th в их структуру). Выплавление силикатной земной коры из мантии по принципу зонного плавления (См.
Зонное плавление) неизбежно приводит к обогащению коры U, Th и щелочными элементами.
В начальную стадию развития Земли выделение радиогенного тепла (См.
Радиогенное тепло) (см.
Геотермика), по расчётным данным советского геофизика Е. А. Любимовой, было в 5 раз больше, чем в современную эпоху. Это было связано с большей Р. г. п. вследствие более высокого содержания радиоактивных элементов (главным образом
92235U и
4019K), а также, вероятно, полностью исчезнувших трансурановых элементов. См. также
Радиоактивные минералы.
Лит.: Любимов Е. А., Термика Земли и Луны, М., 1968: Баранов В. И., Титаева Н. А., Радиогеология, М., 1973; Тугаринов А. И., Общая геохимия, М., 1973.
А. Н. Тугаринов.